Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility

نویسندگان

  • Ashutosh Mittal
  • Rui Katahira
  • Michael E Himmel
  • David K Johnson
چکیده

BACKGROUND In converting biomass to bioethanol, pretreatment is a key step intended to render cellulose more amenable and accessible to cellulase enzymes and thus increase glucose yields. In this study, four cellulose samples with different degrees of polymerization and crystallinity indexes were subjected to aqueous sodium hydroxide and anhydrous liquid ammonia treatments. The effects of the treatments on cellulose crystalline structure were studied, in addition to the effects on the digestibility of the celluloses by a cellulase complex. RESULTS From X-ray diffractograms and nuclear magnetic resonance spectra, it was revealed that treatment with liquid ammonia produced the cellulose IIII allomorph; however, crystallinity depended on treatment conditions. Treatment at a low temperature (25°C) resulted in a less crystalline product, whereas treatment at elevated temperatures (130°C or 140°C) gave a more crystalline product. Treatment of cellulose I with aqueous sodium hydroxide (16.5 percent by weight) resulted in formation of cellulose II, but also produced a much less crystalline cellulose. The relative digestibilities of the different cellulose allomorphs were tested by exposing the treated and untreated cellulose samples to a commercial enzyme mixture (Genencor-Danisco; GC 220). The digestibility results showed that the starting cellulose I samples were the least digestible (except for corn stover cellulose, which had a high amorphous content). Treatment with sodium hydroxide produced the most digestible cellulose, followed by treatment with liquid ammonia at a low temperature. Factor analysis indicated that initial rates of digestion (up to 24 hours) were most strongly correlated with amorphous content. Correlation of allomorph type with digestibility was weak, but was strongest with cellulose conversion at later times. The cellulose IIII samples produced at higher temperatures had comparable crystallinities to the initial cellulose I samples, but achieved higher levels of cellulose conversion, at longer digestion times. CONCLUSIONS Earlier studies have focused on determining which cellulose allomorph is the most digestible. In this study we have found that the chemical treatments to produce different allomorphs also changed the crystallinity of the cellulose, and this had a significant effect on the digestibility of the substrate. When determining the relative digestibilities of different cellulose allomorphs it is essential to also consider the relative crystallinities of the celluloses being tested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of nanoparticles and organic acids on bacterial nano- cellulose synthesis, crystalline structure and water holding capacity

Bacterial cellulose is a biological polymer with a variety of extraordinary properties which make it a functional material for different industrial fields. This work aimed at monitoring the effects of three different organic acids and nanoparticles on the production, water holding capacity and structural characteristics of bacterial cellulose. Different concentrations of organic acids and nanop...

متن کامل

The effect of nanoparticles and organic acids on bacterial nano- cellulose synthesis, crystalline structure and water holding capacity

Bacterial cellulose is a biological polymer with a variety of extraordinary properties which make it a functional material for different industrial fields. This work aimed at monitoring the effects of three different organic acids and nanoparticles on the production, water holding capacity and structural characteristics of bacterial cellulose. Different concentrations of organic acids and nanop...

متن کامل

Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility

BACKGROUND In recent years, biorefining of lignocellulosic biomass to produce multi-products such as ethanol and other biomaterials has become a dynamic research area. Pretreatment technologies that fractionate sugarcane bagasse are essential for the successful use of this feedstock in ethanol production. In this paper, we investigate modifications in the morphology and chemical composition of ...

متن کامل

Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus.

In this study, total 80 typical Miscanthus accessions were examined with diverse lignocellulose features, including cellulose crystallinity (CrI), degree of polymerization (DP), and mole number (MN). Correlation analysis revealed that the crude cellulose CrI and MN, as well as crystalline cellulose DP, displayed significantly negative influence on biomass enzymatic digestibility under pretreatm...

متن کامل

Influence of Fibrolytic Enzymes on the in vitro Hydrolysis and Fermentation of Different Types of Roughages Treatment

The effects of pre-treating different types of roughages with alkali on the efficacy of exogenous fibrolytic enzymes for improving their digestibility were studied in vitroin factorial arrangement 4 × 3 × 5 (enzyme, treatment and roughage types). Two fibrolytic feed enzymes novozyme (N) and celloclast (C) their combination (N+C) were evaluated for their potential to improve in vitrodegradation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2011